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Zinc has a crucial role in the biology of p53 in that p53 binds
to DNA through a structurally complex domain stabilized by
zinc atom. The p53 negative regulator MDM2 protein also
carries a C-terminal RING domain that coordinates two zinc
atoms, which are responsible for p53 nuclear export and
proteasomal degradation. In this clinically translatable study,
we explored the critical role of zinc on p53 reactivation by
MDM2 inhibitor, MI-219, in colon and breast cancer cells.
ZnCl2 enhanced MI-219 activity (3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), apoptosis and
colony formation), and chelation of zinc not only blocked
the activity of MI-219, but also suppressed reactivation of
the p53 and its downstream effector molecules p21WAF1

and Bax. N,N,N0N0-tetrakis(�)[2-pyridylmethyl]-ethyle-
nediamine (TPEN), a specific zinc chelator, but not 1,2-
bis-(o-aminophenoxy)-ethane-N,N,N0,N0-tetraacetic acid
(Bapta-AM), a calcium chelator, blocked MI-219-induced
apoptosis. Nuclear localization is a prerequisite for proper
functioning of p53 and our results confirm that TPEN,
and not Bapta-AM, could abrogate p53 nuclear localiza-
tion and it interfered with p53 transcriptional activation.
Addition of zinc suppressed the known p53 feedback
MDM2 activation, which could be restored by TPEN.
Co-immunoprecipitation studies verified that MI-219-
mediated MDM2-p53 disruption could be suppressed by
TPEN and restored by zinc. As such, single-agent
therapies that target MDM2 inhibition, without supple-
mental zinc, may not be optimal in certain patients owing
to the less recognized mild zinc deficiency among the ‘at-
risk population’ as in the elderly who are more prone to
cancers. Therefore, use of supplemental zinc with MI-219
will benefit the overall efficacy of MIs and this potent
combination warrants further investigation.
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Introduction

The tumor suppressor p53 is the most frequently
mutated gene in human cancers. However, B50% of
all human tumors retain normal or wild-type p53
(wt-p53; Lane and Fischer, 2004). Direct activation of
p53 in these tumors could, in principle, be used as a
means to eradicate tumor cells (Brown et al., 2009). p53
is activated in response to a variety of stresses, such as
DNA damage, nutrient deprivation or oncogenic
activation, resulting in the transcriptional activation of
target genes involved in growth arrest and apoptosis
(Feng et al., 2008). To protect healthy cells from the
deleterious effects of uncontrolled p53 activation, p53 is
subject to a negative feedback loop activated by the
protein product of one of its target genes, MDM2
(Marine and Lozano, 2010). The protein MDM2 binds
to p53, inhibits its transcriptional activation, causes
nuclear export and acts as an E3 ligase to target p53
for proteasomal degradation (Kubbutat et al., 1997).
Thus, there is a fine balance between MDM2, p53 and
the need for p53 activation to promote cell survival or
apoptosis following DNA damage or other cellular
stresses. Unfortunately, in many cancers, the MDM2
protein is overexpressed and suppresses the activation of
even the functional wt-p53, thereby disrupting the finely
tuned balance of cell survival versus cell death. The end
result is a loss of control of the normal apoptotic
processes and contributes to drug resistance. One
potential approach for reactivating p53 in tumor cells
is to disrupt the interaction between MDM2 and p53,
with the MDM2-targeting small molecule MDM2
inhibitor (MI)-219 or related inhibitors (Vassilev, 2007;
Shangary et al., 2008; Shangary and Wang, 2009; Verma
et al., 2010). MI-219 binds to MDM2, thereby prevent-
ing the interaction with p53 and causing p53 to be
stabilized. We and others have shown that MI-219 can
induce growth inhibition and apoptosis in multiple
cancer cell lines and can also induce growth arrest in
corresponding tumor xenografts (Shangary et al., 2008;
Canner et al., 2009; Mohammad et al., 2009; Shangary
and Wang, 2009; Yu et al., 2009).

Wt-p53 is one of the best recognized ‘zinc-finger’
transcription factors and binds DNA through
a sequence-specific DNA-binding domain (p53DBD)
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extending from amino acid (aa) residues 96–308
(Bargonetti et al., 1993). The p53DBD incurs an
unusually high number of mutations that consequently
result in a failure to bind DNA and prevention of
p53-induced transcription (Levine et al., 1995; Levine,
1997). This fact strongly suggests that sequence-specific
DNA binding and transactivation are the key activities
that control the biological functions of p53 (Meek,
1998). The crystal structure of p53DBD reveals that the
p53 core domain structure consists of a beta sandwich
that serves as a scaffold for two large loops (L2 and L3)
and a loop–sheet–helix motif (L1; Pavletich et al., 1993).
Zn2þ is coordinated to C176 and H179 of the L2 loop,
and to C238 and C242 of the L3 loop (Pavletich et al.,
1993; Cho et al., 1994). Zinc coordination has been
demonstrated to be necessary for the proper folding of
the p53 core domain in vitro and disruption of this
interaction greatly reduces or abrogates p53 DNA
binding and transactivation of target genes (Meplan
et al., 2000). Nuclear magnetic resonance spectral
analyses reveal that the DNA-binding surface is altered
by removing zinc ion and fluorescence anisotropy
studies show that zinc ion removal abolishes site-specific
DNA-binding activity (Butler and Loh, 2003, 2007).
Using a cell-permeable metal chelator, previous inves-
tigators were able to show that depletion of intracellular
zinc could induce a change in p53 protein conformation
with loss of DNA-binding capacity that was reversible
upon removal of the chelator from the culture medium
or the addition of zinc to the media (Verhaegh et al.,
1998). The amount of supporting information certainly
highlights the crucial role of zinc in the biology of p53
protein and its importance for DNA binding as well as
stability of this important tumor suppressor.

The p53 negative regulator MDM2 protein contains a
C-terminal RING domain (aa 430–480) which coordi-
nates two molecules of zinc (Wallace et al., 2006;
Wawrzynow et al., 2009). This unique RING finger is
responsible for shuttling p53 out of the nucleus for
proteasomal degradation and is also responsible for
MDM2 auto-ubiquitination (Alshatwi et al., 2006;
Itahana et al., 2007; Lindstrom et al., 2007). The
intrinsic E3 activity of MDM2 is dependent on its
zinc-coordinated RING finger domain. The capacity to
mediate MDM2’s own ubiquitination requires no
eukaryotic proteins other than E1 and E2. Therefore,
zinc acts as a ‘double-edged sword’ promoting p53
activity, while simultaneously causing MDM2 auto-
ubiquitination.

Mild zinc deficiency is a common occurrence in the
elderly, a population that is well known to be more
prone to cancers (Prasad et al., 1993; Prasad, 2001,
2004). The observed deficiency of zinc in the elderly has
been attributed to a combination of factors that includes
poor zinc absorption as well as consumption of low-zinc
diets (Hambidge et al., 1998). Low intracellular zinc has
been found in different tumors and has been correlated
to induction of oxidative DNA damage, disruption of
p53, AP1 DNA binding and also affects DNA repair
(Ho and Ames, 2002; Ho, 2004; Ho and Song, 2009).
Therefore, therapies that are based on using small

molecule inhibitors to target MDM2 may not be fully
successful in the clinical setting or in patients owing to
unrecognized mild-to-moderate zinc deficiency. The
studies presented in this paper demonstrate that zinc is
crucial for the activity of p53 reactivated by MI-219 and
provide evidence for using combination therapies with
MI-219 that include supplemental zinc for the treatment
of wt-p53 tumors. Before MIs make their way into the
clinic for patients, we believe that the results of our
findings will have high impact towards the design of
novel treatment strategies (that is, combination with
zinc) for achieving better survival outcome.

Results

Metal chelation in general and zinc-specific depletion
suppresses MI-219-induced growth inhibition and
apoptosis
To verify the role of metal ions on the activity of MI-
219, we performed growth inhibition and apoptosis
assays in media chelated to remove trace and non-trace
metals (chelexed media). Assessment of chelation using
atomic absorption spectroscopy confirmed chelation of
zinc (and minimal chelation of copper; Supplementary
Table 1). Our laboratory has previously standardized
the procedure of zinc chelation that minimally alters the
status of other trace metal ions such as iron, copper and
magnesium (Prasad et al., 2001, 2002; Bao et al., 2006).
HCT-116 and MCF-7 cells (wt-p53) were passaged in
chelexed media and then treated with MI-219 (0–10 mM
for 72 h) followed by analysis of growth inhibition by
MTT assay. In normal media, the IC50 of MI-219 in
HCT-116 and MCF-7 cells is 4 and 3.5 mM, respectively.
However, in chelexed media depleted of trace metals, the
IC50 increased to 410 mM (Figure 1a). Similar to the
results obtained from MI-219-induced growth inhibition
(0–10 mM for 72 h), MI-219 was also less effective in
inducing apoptosis in chelexed media (Figure 1b). We
did not observe any appreciable toxicity represented as
change in growth patterns in cells grown in chelexed
media versus those grown in normal media (Figure 1c).
Based on our preliminary studies to define the optimal
conditions, we found that specifically chelating Ca
(using 1,2-bis-(o-aminophenoxy)-ethane-N,N,N0,N0-tetra-
acetic acid (Bapta-AM)) or copper (using bathocuprione
disulfonate) had no effect on the events studied here and
these specific chelators were used as negative controls in
studies designed to determine the specific effect of zinc in
MI-219-induced p53 reactivation. To delineate the crucial
role of zinc on the efficacy of MI-219, we first evaluated
the effect of ZnCl2 (0–32mM) on both HCT-116 andMCF-7
cells. As can be seen from results in Figure 2a, ZnCl2
alone did not induce any appreciable growth inhibition in
both cell lines. We then performed dose kinetics experi-
ment to verify the effect of ZnCl2 on MI-219-mediated
cell growth inhibition. As can be seen from our novel results
in Figure 2b, ZnCl2 at increasing doses progressively
enhanced cell growth inhibition by MI-219. We also
tested the effect of this combination on colony formation
capability in HCT-116 cells. Figure 2c shows colony
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formation in control and zinc-alone treated cells. MI-219
alone, as expected, suppressed colony formation. However,
the most important and clinically relevant results are
observed in the combination treatment where no colonies
were visible even after 4 weeks. Taken together, these results
indicate that MI-219 requires trace metal ions, specifically
zinc, for its proper activity. As Chelex is non-specific metal
chelator, in the next experiments, we used TPEN (a well-
recognized membrane permeable zinc-specific chelator) to
verify the exclusive role of zinc in mediating MI-219-
induced apoptotic effects. Histone DNA enzyme-linked
immunosorbent assay results shown in Figure 3a confirm
that addition of TPEN (1mM) significantly blocks MI-219-
mediated apoptosis and this could be restored by the
addition of 16mM ZnCl2 to both HCT-116 and MCF-7
cells. We also performed Annexin V fluorescein isothio-
cyanate apoptosis analysis to verify that MI-219-mediated
apoptosis could only be blocked by TPEN and not other
metal chelators such as the calcium-specific Bapta-AM or
copper chelator, bathocuproine (Figure 3b). Taken toge-
ther, these results highlight a significant role of zinc in the

activity of MI-219 on wt-p53 cells. We then tested the role
of zinc on the reactivation of p53 pathway in both HCT-116
and MCF-7 cells.

Zinc depletion blocks MI-219-mediated p53 reactivation
It is well known that for its transcriptional activity, p53
requires a specific DNA-binding sequence that is
coordinated by a complex helix domain motif stabilized
by a zinc atom. It is therefore expected that, by
modifying zinc levels, one would affect the DNA-
binding capacities of p53, which would result in altering
the reactivation of p53 induced by MI-219. We
performed western blot analysis to determine the specific
role of zinc on p53 reactivation. As can be seen from
results in Figures 4a and b, in regular media, MI-219
treatment (0–10 mM for 24 h) in both HCT-116 and
MCF-7 cells resulted in sequential upregulation of p53
along with downstream effecter molecules such as the
cell cycle regulator, p21, and the pro-apoptotic Bax.
However, using chelexed media, we found negligible to
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Figure 1 Chelation suppresses MI-219-mediated growth inhibition and apoptosis. (a) wt-p53 HCT-116 and MCF-7 cells were treated
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modest expression of p53. Furthermore, the down-
stream effectors (p21 and Bax) were also not upregu-
lated. We then used TPEN to evaluate the exclusive role
of zinc on p53 reactivation on cell growth in normal
media. In line with our cell growth inhibition and
apoptosis studies using chelexed media, TPEN (1 mM)
significantly blocked p53 pathway reactivation in both
HCT-116 and MCF-7 cells, which could be partially
restored by addition of 16 mM ZnCl2 (Figure 4c). These
results confirm our hypothesis that zinc is required for
the proper reactivation of p53 by MI-219.

Zinc chelation blocks p53 nuclear localization
Nuclear localization of p53 is a necessary prerequisite
for its proper function (O’Brate and Giannakakou,
2003). Therefore, we tested whether zinc chelation could

alter the nuclear localization of p53. To achieve this, we
used a fluorescent microscopy p53-Cell-Based Activa-
tion/Translocation assay kit coupled with a highly
specific p53 primary monoclonal antibody and DyLight
conjugated secondary antibody. As can be seen from
results shown in Figure 5a, in both HCT-116 (upper
panel) and MCF-7 (lower panel) cells, MI-219 (5 mM )
could induce p53 nuclear localization in normal
media but not in chelexed media. Chelation of zinc with
TPEN could suppress p53 localization that again could
be restored by addition of ZnCl2 (16 mM). To further
confirm that MI-219 activity is specifically directed
towards wt-p53, we used small interfering RNA
(siRNA) against p53 and as can be seen from results
in Figure 5b, in both HCT-116 and MCF-7 cells, p53
knockdown shows neither p53 activation nor transloca-
tion induced by MI-219. To reaffirm siRNA silencing of
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p53, we also performed western blot analysis to demon-
strate negative expression of p53 in p53 siRNA-treated
and not in control siRNA-treated cells (Figure 5c).

These results for the first time, confirm that zinc is
crucial for the proper reactivation of p53 as well as its
nuclear localization induced by the MI-219.
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Zinc augments p53 transcription in HCT-116
and MCF-7 cells
We tested the p53 transcription activity using a sensitive
non-radioactive method for detecting specific transcription
factor DNA-binding activity in nuclear extracts. In this
assay, a specific double-stranded DNA sequence contain-
ing the p53 response element is immobilized onto the wells
of a 96-well plate. p53, present in a nuclear extract, binds
specifically to the p53 response element and is detected by
addition of a specific primary antibody directed against
p53. A secondary antibody conjugated to horseradish
peroxidase is added to provide a sensitive colorimetric
readout at 450 nm. As can be seen from results in
Figure 6a, MI-219 (10mM) induces p53 transcription that is
significantly augmented by addition of ZnCl2 (16mM). In
line with our growth inhibition, apoptosis, western blot
and p53 nuclear localization results, TPEN suppressed
MI-219-mediated p53 transcription that could be restored
by addition of zinc. Furthermore, the MI-219 inactive
analog, MI-10, did not induce p53 transcriptional activity.
These results are in further support of our hypothesis that

zinc has an important role in the biology of p53 and its use
in conjunction of such a targeted therapy.

Zinc suppresses p53-MDM2 regulatory feedback
mechanism
MDM2 contains an auto-regulatory RING finger
domain that coordinates zinc atoms. Therefore, we
sought to assess the role of zinc addition and chelation
on the activity of MDM2. As can be seen from results
shown in Figure 6b, MI-219 alone at 10 mM induces
MDM2 expression which was expected, as activated p53
positively regulates MDM2 (Levine, 1997 ). However, in
the presence of zinc (ZnCl2 16 and 32mM), the induction of
MDM2 was suppressed but could be restored by addition
of TPEN. These results provide evidence that zinc is
required for proper positive regulation of MDM2
by p53. We further performed co-immunoprecipitation
experiments to verify the effect of zinc chelation/addition
on disruption of MDM2–p53 complex. As can be seen
from the results shown in Figure 6c , MI-219 disrupts the
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MDM2–p53 interaction (with less protein precipitated in
the treated samples) and this could be reversed by the
addition of TPEN. The addition of supplemental ZnCl2
(32mM) could negate the effect of zinc chelator TPEN,
thereby restoring the MI-219-induced disassociation
between MDM2 and p53.

Discussion

This clinically translatable study, for the first time, provides
insight into the mechanisms by which zinc affects the
activity of the MI-219 in mediating proper reactivation of
p53, leading to apoptosis in wt-p53 cancer cells. MI-219 is
entering phase I clinical trials. Before MIs make their way
for treatment of cancer patients, we believe that our findings
will positively impact the design of MI therapy.

According to the International Zinc Nutrition Con-
sultative Group, 20% of the world’s population lack
sufficient zinc in their diet, while one-third live in
countries considered at high risk of zinc deficiency
(Brown et al., 2004). Zinc is required by at least 200
different proteins and transcription factors (Christian-
son, 1991). Zinc binding by p53 was confirmed when the
partial crystal structure of the protein was published
(Collins et al., 1997). The zinc atom has an essential
structural role in stabilizing the architecture of the DBD

of p53 and it has clearly been shown that zinc is an
important cofactor for p53 DNA-binding activity
in vitro. Most of this evidence relies on the fact that
metal chelators can remove zinc from p53, turning the
protein to a ‘mutant-like’ form with loss of such
sequence-specific DNA-binding activity (Meplan et al.,
1999). Likewise, the p53 regulator MDM2 carries
a RING domain that coordinates two zinc atoms
(Wawrzynow et al., 2009). The major functions of this
RING domain are to mediate nuclear export of p53 for
proteasomal degradation and also induce MDM2 auto-
ubiquitination. Therefore, we believe that zinc acts as a
double-edged sword, on one hand promoting p53
reactivation and on the other causing MDM2 degrada-
tion. Most of intracellular zinc is immobilized in
proteins, however, cells also contain a pool of labile
zinc, which is in dynamic equilibrium with the extra-
cellular medium (Zalewski et al., 1993, 1994). This labile
zinc can undergo fluctuations (three–fivefold) depending
on the availability of zinc. Such changes in zinc levels
(1–10 mM range) might have regulatory effects on
specific, intracellular metalloproteins including all im-
portant p53.

Strategies that utilize MDM2 inhibition to reactivate
p53 pathway may not be fully successful in zinc-deficient
environments/patients. Based on this assumption,
we investigated in wt-p53 cancer cells (HCT-116 and

HCT-116 (24 hrs)

*

**

**
MCF-7 (24 hrs)

*
**

** **

2.0

1.0

1.5

0.0

0.5

p5
3 

ac
tiv

at
io

n 
(O

D
 4

50
nm

)
N

uc
le

ar
 F

ra
ct

io
n

p5
3 

ac
tiv

at
io

n 
(O

D
 4

50
nm

)
N

uc
le

ar
 F

ra
ct

io
n

2.0

1.0

1.5

0.0

0.5

MCF-7 Cells 24 hrsMCF-7 Cells 24 hrs
TPEN

MI-219 (5 μM)

TPEN (1 μM)

Zinc (32 μM)

IP p53 Western blot MDM2IP MDM2 Western blot p5324 hrs

ZnCl2 (�M)

MDM2

�-actin

MI-219 (10 �M)

p53 MDM2

- +++ + +

- ++- + +

+

+
+

+

++-

--
- - -

+

+
+

+

++-

--
- - -

Figure 6 Zinc enhances MI-219-mediated p53 transcription that is blocked by TPEN. (a, b) Semi-confluent HCT-116 and MCF-7
cells grown in triplicate were exposed to either vehicle (DMSO); MI-219 (10 mM); MI-219 (10mM) þ ZnCl2 (16mM); MI-219 (10mM) þ
ZnCl2 (16mM) þ TPEN (1mM); MI-219 (10mM) þ CaCl2 (15 mM) or MI-219 (10mM) þ CaCl2 (15mM) þ Bapta-AM (10mM) for 24 h in
six-well plates. Nuclear lysates were isolated and p53 transcription assay was performed in 96-well plates according to manufacturer’s
protocol (Cayman Chemicals). ZnCl2 (16 mM) enhances MI-219 (10 mM)-mediated p53 transcription that is blocked by TPEN. Calcium
does not induce p53 transcription and the calcium chelator, Bapta-AM, has no affect. NiCl2-treated HeLa cell lysates were used as
positive control (provided in kit) whereas MI-10, the inactive analog of MI-219, was used as negative control. *Represents Po0.05 and
**Po0.01. (c) ZnCl2 suppresses MDM2 protein expression and enhances MI-219-induced MDM2-p53 disruption. MCF-7 cells were
exposed to either vehicle (DMSO); MI-219 (10mM); MI-219 (10 mM) þ ZnCl2 (16 mM); MI-219 (10mM) þ ZnCl2 (32mM); MI-219
(10mM) þ ZnCl2 (16 and 32 mM) in the presence of TPEN (1mM) for 24 h, and protein lysates were subjected to western blot analysis
followed by probing with MDM2 antibody. ZnCl2 (16 and 32mM) suppressed MDM2 expression (d) Co-immunoprecipitation studies
of MCF-7 cells demonstrate reduced disruption of MDM2–p53 interaction in the presence of TPEN. Again ZnCl2 abrogates the effects
of TPEN. Blots are representative of three independent experiments.
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MCF-7) and demonstrated that zinc is necessary for the
activity of MI in mediating enhanced reactivation of p53
leading to apoptosis. Our findings confirmed that in the
absence of zinc, the efficacy of MI-219 is diminished.
Following that, we verified the effect of zinc chelation
on MI-219-induced p53 reactivation. As expected, p53
pathway including downstream effector p21 and Bax,
reactivation was markedly suppressed by zinc chelation
and most significantly, this activity was restored by the
addition of zinc. These results provide irrevocable
evidence for the crucial requirement of zinc on the
activity of MI-219 in restoring superior p53 functioning.

Cytoplasmic p53 is rapidly degraded by MDM2-
mediated ubiquitination; a reason for inhibiting MDM2
activity using MI-219. However, under stress, p53
shuttles to nucleus where it transactivates numerous
genes regulating cell cycle, apoptosis and senescence
(Chen et al., 2006). It is logical to hypothesize that by
blocking MDM2-p53 binding, p53 would be allowed to
localize into the nucleus and initiate transcription of
target genes. To demonstrate that this is a zinc-
dependent phenomenon, we found that in the presence
of zinc chelator TPEN, p53 nuclear localization was
significantly diminished and that the addition of zinc
could restore this function (Figure 5). Using siRNA
against p53 to silence the p53 expression reaffirmed the
nuclear localization data observed above, which further
re-instates that zinc is a crucial component of the p53
localization signaling pathways. On a cautionary note,
we believe that it is too early to fully explain how zinc
chelation blocks p53 nuclear localization. One possibi-
lity is that zinc deficiency may induce p53 conforma-
tional change that would hinder proper alignment of
p53 to the nuclear localization signal sequence and thus
block its nuclear translocation. Another explanation for
the observed effects comes from an earlier study done by
Giannakakou et al., (2002), where it was shown that in
low-zinc environment, the microtubule assembly re-
quired to position p53 on nuclear localization signal
sequence is disturbed and results in reduced nuclear
localization. However, it is understood that more work
is needed in this direction before concluding to the exact
mechanism behind such reduced p53 nuclear localiza-
tion. Pavletich et al., (1993) have reported that for
proper transcription, p53 requires specific DNA-binding
sequence that is regulated by zinc atoms. In this
study, we also found that by lowering zinc levels, p53
transcription activity was suppressed (Figure 6). Forti-
fied with the above strong evidence, we correctly
hypothesized that zinc was required for the efficacy of
MI-219 on the reactivation of p53.

It is well recognized that MDM2 expression is under a
positive feedback loop of p53. However, overexpression
of MDM2 as may occur in cancer cells inhibits the p53
reactivation. This would make the cancerous/tumor cells
to multiply continuously or become resistant to che-
motherapy. To this end, we explored whether zinc could
affect the MI-219-induced inhibition of MDM2 and
cause p53 release and thus, p53 reactivation. Our results
show that the addition of zinc can significantly enhance
MI-219-induced suppression of MDM2–p53 interaction

and that this suppression could be reversed by a specific
zinc chelator, TPEN, which provides clear proof for
the role of zinc in this process. We believe that zinc
chelation may change the p53-binding pocket in
MDM2. It is also possible that zinc binding to the sites
on MDM2 may alter its conformation and thus its p53-
binding affinity (summarized in Figure 7). Such binding
studies using X-ray crystallography are currently under
study in our laboratory. In conclusion, therapies which
target p53 reactivation using MI approach may still not
be fully successful in zinc-deficient environment that is
commonly found in a sizable patient population (Prasad
et al., 1993; Prasad, 2001, 2004). Therefore, a logical
step forward is to use supplemental zinc to enhance the
efficacy of MI-219 for treatment of cancers.

Materials and methods

Cell culture, experimental reagents and chemicals
HCT-116 (wt-p53) was obtained from Dr Bert Vogelstein’s
lab. MCF-7 (wt-p53) breast cancer cell line was purchased
from American Type Culture Collection (ATCC, Manassas,
VA, USA). The cell lines have been tested and authenticated in
our core facility, Applied Genomics Technology Center at
Wayne State University, as late as 13 March 2009. The method
used for testing was short tandem repeat profiling using the
PowerPlex 16 System from Promega (Madison, WI, USA).
Primary antibodies for p53, Bax, MDM2 and p21
were purchased from Cell Signaling (Beverly, MA, USA). All
secondary antibodies were obtained from Sigma (St Louis,
MO, USA). MI-219 was synthesized by using our previously
published methods (Ding et al., 2005, 2006). Chelex 100 resin,
the zinc chelator, N,N,N0N0-tetrakis(�)[2-pyridylmethyl]-ethy-

p53

MDM2p53
A

MI-
219

B

MDM2MI-
219

TPEN or Chelation
binds or removes Zn+

C
p53

= Co-ordinating Zn+
p53

Figure 7 Zinc has a crucial role in the biology of p53
(a mechanistic summary) (A). MDM2 binds to p53 and targets
p53 for nuclear export and proteasomal degradation (B). MI-219’s
ability to block this interaction is enhanced by the presence of zinc,
releasing p53 to bind to DNA (C). p53 sequence-specific DNA
binding requires crucial zinc atoms. If present, p53-initiated
transcription blocks p53-MDM2 feedback loop and promotes
MDM2 auto-ubiquitination. Chelation or TPEN, a membrane
permeable metal chelator, abrogates zinc-mediated effects by
removing zinc from p53 and causing a conformational change to
prevent DNA binding. Changes in binding affinity induced by zinc
(or its removal) may also apply to MI-219–MDM2 and MDM2–
p53 interaction as well (D). TPEN also blocks zinc-mediated
MDM2 auto-ubiquitination. A full colour version of this figure is
available at the Oncogene journal online.
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lenediamine (TPEN), the calcium chelator, BAPTA-AM, the
copper chelator, bathocuprione disulfonate, and ZnCl2 were
purchased from Sigma.

Metal-deficient media
Chelation of media and other solution with chelex 100 resin
(Sigma, St Loius, MO, USA) is a non-specific method of
removing unbound or excess trace and, to some extent, non-
trace metals. The advantage of its use is that the resin bound to
the metals can be physically removed from the media. Metal
ions were removed from the culture media, Dulbecco’s modied
Eagle’s medium or McCoy 5A, by incubating regular media
(Dulbecco’s modified Eagle’s medium supplemented with fetal
bovine serum penicillin and streptomycin, and 10% glutamine,
or McCoys 5A media supplemented with fetal bovine serum
penicillin and streptomycin, 10% glutamine and 10% 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid ) with chelex
100 resin (1 g per 50ml media) for 1 h at 37 1C. After incubation,
the media was vacuum filtered to remove the metal-bound resin.
The zinc and copper content was determined using atomic
absorption spectroscopy using our previously established
methods (Beck et al., 2004) and other electrolytes plus iron
determined by the clinical laboratories at the Detroit medical
center. Chelation of particular metal ions was accomplished by
adding metal-specific chelators to normal media and includes
TPEN for zinc, BAPTA-AM for calcium, bathocuprione
disulfonate for copper and desferroxamine for iron.

Cell growth inhibition studies by MTT and clonogenic assay
HCT-116 and MCF-7 cells (3� 103) were seeded in a 96-well
culture plate either in regular or chelexed media, treated with
MI-219 (0 to 10 mM) for 72 h and MTT assay was performed as
described earlier (Azmi et al., 2008). The results were plotted as
means±s.d. of three separate experiments using six determina-
tions per experiment for each experimental condition. Clono-
genic assay for cell survival on HCT-116 cells was performed
according to previously described methods (Azmi et al., 2010).

Quantification of apoptosis by annexin V fluorescein
isothiocyanate flow cytometry and enzyme-linked
immunosorbent assay
Apoptosis in HCT-116 and MCF-7 cells was determined using
Annexin V fluorescein isothiocyanate apoptosis kit (Biovision
Research Products, Mountain View, CA, USA) and enzyme-
linked immunosorbent assay detection kit (Roche, Palo Alto,
CA, USA) according to manufacturer’s protocol.

siRNA and transfections
To study the effect of MI-219 on reactivating p53 in the
presence of silenced wt-p53, we utilized siRNA techniques in
both HCT-116 and MCF-7 cells. The p53 siRNA and control
siRNA were obtained from Cell Signaling. Cells were
transfected with respective siRNAs for 5 h using LipofectA-
MINE 2000 according to the manufacturer’s protocol (Cell
Signaling).

Western blot analysis
HCT-116 or MCF-7 were exposed to different treatments for
24 h followed by extraction of protein for western blot
analysis. Procedure for cells lyses, protein concentration
determination and SDS–polyacrylamide gel electrophoresis
analysis has been described in our previous publication
(Mohammad et al., 2009).

P53 activation and translocation
Activation and translocation of p53 post MI-219, chelation or
siRNA treatments was detected using ‘Cayman’s p53 Cell-
Based Activation/Translocation Assay Kit’ (Ann Arbor, MI,
USA) according to the manufacturer’s protocol.

p53 transcript DNA-binding assay
Specific transcription factor DNA binding in nuclear extract
post-treatments was detected using the sensitive non-radio-
active ‘Cayman’s p53 Transcription Factor Assay kit’. The
procedure for nuclear extract preparation and transcription
activity was done according to the manufacturer’s protocol.
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